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ABSTRACT
Kitchen fires pose a significant challenge and threat to people and the environment. Prompt 
response and accurate classification of fire occurrences are crucial to ensure safety and reduce 
potential property damage. This study addresses the need for effective fire detection technologies 
by evaluating the performance of the You Only Look Once version 5 medium (YOLOv5m) model 
using both hue, saturation, and value (HSV) and visible light (red, green, and blue [RGB]) color 
spaces. To reduce false positives, the experiment was expanded by including background images 
in the training dataset. Two kitchen fire datasets, one in RGB and one in HSV, were used to train 
and evaluate the model. Based on the results, HSV color space offers higher recall and precision 
for fire-on-pan detection, achieving 0.882 and 0.931, outperforming RGB. The best overall mean 
performance was in the first experiment, RGB without background images, resulting in the highest 
mean average precision (mAP)@0.5:0.95 score of 0.651. This performance was limited by lower 
recall and precision compared to HSV in specific fire scenarios. A key limitation of this study is its 
focus on kitchen environments, for which the findings may not be directly generalizable to other 
fire scenarios with different environmental conditions or fire characteristics. Furthermore, the study 
is limited to the YOLOv5m architecture, where other detection models may yield different results.  
In terms of kitchen fire detection, this study provides a comprehensive comparison of the RGB and 
HSV color spaces, offering insights into their benefits and drawbacks. This research shows that 
the HSV color space is useful in certain fire detection scenarios, and that combining the two color 
spaces yields an improved detection model for real-time applications.

Keywords: Deep learning, HSV, kitchen fire detection, 
object detection, RGB, YOLOv5

INTRODUCTION

A fire starting from the kitchen extended 
farther than the cooking space and could 
easily burn combustibles kept in other areas 
of the house. Flashover may occur if the fire 
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spreads swiftly. The appearance of flashover, which is a crucial factor in catastrophic fires, 
is typically interpreted as a sign of untenable conditions (Rasbash, 1991). The fire will 
spread more quickly and could endanger the entire building. This highlights the critical 
need for more sustainable and effective methods to prevent fires. Consequently, to address 
the fire risk issue, an innovative fire detection system must be developed. 

Fire detection systems are designed to detect fires early, providing sufficient time to 
extinguish them and ensure the safe evacuation of residents. Early detection may protect the 
safety of emergency response personnel, reduce property losses, and minimize operational 
downtime since control measures are initiated (Graham & Roberts, 2000). Existing fire 
detection systems can include detectors for smoke, heat, or flame, which are connected to 
a fire alarm system that triggers an alarm to alert people to potential danger. 

However, these systems have difficulties in accurately detecting fires in dynamic 
environments like kitchens, where smoke and steam are frequent byproducts of cooking 
activities (Choi et al., 2023; Milke & Zevotek, 2016). Due to the complex conditions in 
kitchen settings, such as variable lighting, reflective surfaces, and background clutter, it 
is becoming increasingly challenging for conventional sensors to differentiate between 
real fire occurrences.  Therefore, there is a pressing need for more advanced and reliable 
fire detection systems capable of detecting genuine fire events early in typical kitchen 
environments. Transitions of various innovative methods have been introduced to improve 
fire detection systems, such as vision-based fire detection (Bu & Gharajeh, 2019; Dilshad 
et al., 2023). Vision-based systems use image texture and color to identify flames. RGB 
and HSV are two of the most used color spaces in fire detection because they facilitate 
the easy distinction between fire and other elements in a kitchen environment. Giwa and 
Benkrid (2024) suggested systems vary in complexity; to recognize distinguishing fire 
characteristics in a video series, including color, velocity, temporal variations, spatial 
variations, and dynamic texture, they use a variety of image processing, machine learning 
techniques, and convolutional neural network (CNN) structures. 

The RGB color space is mostly used in fire detection, which presents a significant issue 
because it can be extremely sensitive to changes in illumination and reflections, resulting in 
false alarms (Bakri et al., 2018). On the other hand, the HSV color space is more resilient 
to changes in illumination since it distinguishes between color intensity and chromatic 
content. However, it is not completely error-proof (Mutar, 2019). 

In machine learning, object detection is the process of identifying and categorizing 
objects that meet predetermined criteria. Examples include drawing boxes around the 
objects and labeling them with their assigned class. Modern object identification techniques 
like You Only Look Once (YOLO) have drawn much attention lately because of their 
dependability, speed, and accuracy (Redmon et al., 2015). Numerous studies and real-world 
applications have consistently demonstrated the efficiency of this novel approach, which 
has shown great promise across a range of applications. 
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YOLO was built on a CNN that predicts several bounding boxes at once and assigns 
class probabilities to each box in an image using a single neural network and a single 
forward propagation process. The evolution of YOLO architecture with the development 
of numerous iterations, including You Only Look Once version 1 (YOLOv1) to You Only 
Look Once version 11 (YOLOv11), which are YOLOv1 (Redmon et al., 2015), You Only 
Look Once version 2 (YOLOv2, Redmon & Farhadi, 2017), You Only Look Once version 
3 (YOLOv3, Redmon & Farhadi, 2018), You Only Look Once version 4 (YOLOv4, 
Bochkovskiy et al., 2020), You Only Look Once version 5 (YOLOv5, Jocher, n.d.b), You 
Only Look Once version 6 (YOLOv6, Li et al., 2022), You Only Look Once version 7 
(YOLOv7, C.-Y. Wang et al., 2022), You Only Look Once version 8 (YOLOv8, Jocher, 
n.d.a), You Only Look Once version 9 (YOLOv9, C.-Y. Wang et al., 2024), You Only 
Look Once version 10 (YOLOv10, A. Wang et al., 2024), and the latest in the year 2024 
is YOLOv11 from Ultralytics. This version represents a significant improvement over the 
previous versions. Still, the official version exhibits some instability due to network-related 
updates. In this study, the YOLOv5 version (Jocher, n.d.b) was selected due to its network 
structure, which is more efficient than that of YOLOv8 (Geng et al., 2024), resulting in 
a smaller model size and improved deployment and operating efficiency. Furthermore, 
YOLOv5 enhances object detection performance by employing multiple optimization 
techniques and a less computationally intensive backbone, making it an excellent choice 
for real-time applications (Geng et al., 2024). With a pre-trained model and an intuitive 
application programming interface (API), YOLOv5 is a convenient and user-friendly 
choice. 

Existing fire detection methods often struggle with the diverse and dynamic conditions 
prevalent in kitchen environments, including variations in lighting, the presence of steam 
and smoke from cooking, and the wide range of background objects. This paper aims to 
address these limitations by investigating the efficacy of a YOLOv5-based fire detection 
system that uses both RGB and HSV color spaces for early kitchen fire detection. 
Specifically, the primary objective of this study is to evaluate the performance of RGB and 
HSV color spaces when integrated with the YOLOv5 object detection model for detecting 
early-stage kitchen fires. 

This work focuses on detecting visible kitchen fires in images taken in realistic  kitchen 
environments. Although the initial plan included addressing the problem of early fire 
detection, the available dataset obtained so far contains mainly active fire images. For 
this reason, pre-flame states, including those for smoke-only and smoldering conditions, 
are not considered in this paper. The comparative study presented in this article focuses 
on the impact of color space representations (RGB versus HSV) on YOLOv5m’s object 
detection performance in cluttered kitchen environments.

Two distinct datasets were created: one containing images in the RGB color space and 
the other in the HSV color space. This study systematically compares the performance of 
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these two color spaces within the YOLOv5 framework to identify an optimal approach for 
accurately distinguishing fire from non-fire events in real-time kitchen scenarios. 

RELATED WORKS

YOLOv5 has achieved significant gains in both accuracy and speed for real-time 
applications, and numerous works have focused on improving its architecture for 
fire and smoke detection. However, most of these models operate primarily in 
the RGB color space, without assessing how color representation may influence 
detection performance under challenging indoor environments, such as kitchens. 
Table 1 shows advances in object detection models, particularly in architectural 
improvements for vision-based fire detection. These include integrated channel 
attention and transformer mechanisms from Liang et al. (2023), while Geng et al. 
(2024) presented YOLOFM, which integrates the FocalNext block, a quantization-
aware hybrid attention-reparameterized feature pyramid network (QAHARep-FPN), 
and the Focal-scaled intersection over union (SIoU) loss function. 

Another project has been developed, which involved You Only Look Once 
version 5 small (YOLOv5s) backbone replacement with EfficientNetV2 and 
introduction of a Smooth L1 loss function (S. Wang & Wang, 2023). Enhancement 
of the YOLOv5 framework by D. Zhang and Chen (2024), which incorporates the 
FasterNet network into its backbone, while the neck network uses Ghost-Shuffle 
Convolution (GSConv). They also introduced a one-time aggregation cross-stage 
partial network module, a one-shot aggregation network-based ghost shuffle cross-
stage partial (VoV-GSCP) in the modified model.

A modified version of the YOLOv5m with real-time auditory notifications was 
introduced by Abdusalomov et al. (2022), which was designed to assist visually 
impaired individuals, especially during a fire. Kobeissi and Boulos (2023) explored 
the use of a combination of YOLOv5 and MiDaS depth estimators to enhance 
indoor fire detection. 

However, these enhancements often remain bound to the RGB color domain, 
potentially overlooking the benefits offered by alternative color spaces. There is 
a distinct dearth of targeted research addressing fire detection specifically inside 
kitchen contexts, despite strong evidence suggesting that a significant number of 
fires originate in kitchens (Chow & Liu, 2016; J. Liu et al., 2019; Ngai et al., 2022; 
Spearpoint & Hopkin, 2020; Zulkiffli, 2018). Although a great deal of research 
has been conducted on fire detection devices, relatively little has focused on the 
characteristics and challenges of kitchen fires. This gap in the literature underscores 
the need for further research into fire detection techniques specifically designed for 
kitchens to enhance early warning systems in high-risk environments.



2801Pertanika J. Sci. & Technol. 33 (6): 2797 - 2832 (2025)

RGB vs. HSV for Kitchen Fire Detection with YOLOv5

Table 1 
Summary of related work

Authors Models’ 
enhancements

Dataset Color 
space 
used

Performance 
metrics

Findings

D. Zhang and Chen (2024) The 
backbone 
network 
integrates 
YOLOv5 
with the 
FasterNet 
network. The 
neck network 
uses GSConv 
and VoV-
GSCSP. 

Public 
dataset

RGB Average 
accuracy 
= 98.3%, 
reduction in 
memory usage 
= 31.4%, 
increase in 
detection 
speed = 13%.

The model is 
lightweight, 
maintaining 
accuracy.
Reduce model 
memory 
usage, model 
parameters, 
and 
computational 
costs.
Improve 
detection 
speed.

Geng et al. 
(2024)

Improved 
YOLOv5n 
with 
QARepNeXt 
for feature 
extraction, 
Integration of 
QAHARep-
FPN, and 
Focal-SIoU 
loss function. 

FM-VOC 
Dataset18644

RGB mAP50-
95 = 7.9% 
improvement.

Improved 
feature 
extraction 
for better fire 
and smoke 
detection.

Liang et al. 
(2023)

Channel 
attention and 
transformer in 
YOLOv5s.

Self-built 
internet fire 
image

RGB 14% mAP 
improvement 
and 68 FPS.

Enhanced 
detection 
speed and 
accuracy 
for fire and 
smoke. 

S. Wang and 
Wang (2023)

YOLOv5s 
backbone 
replaced with 
EfficientNetV2 
and SIoU loss.

PASCAL 
VOC2007

RGB mAP = 20% 
improvement, 
15% recall 
improvement.

Lightweight 
and real-time 
fire detection 
with improved 
accuracy.

Kobeissi and 
Boulos (2023)

YOLOv5 and 
MiDaS depth-
mapper, depth 
estimator.

Fire and 
smoke 
dataset
2) Fire and 
gun on 
Kaggle

RGB + 
Depth

98.26% 
accuracy was 
achieved in 
the larger 
MiDaS 
version.

Locating and 
detecting 
indoor fires 
with the use 
of a single 
camera.
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Authors Models’ 
enhancements

Dataset Color 
space 
used

Performance 
metrics

Findings

Abdusalomov 
et al. (2022)

YOLOv5m 
with real-
time auditory 
notifications 
for the 
visually 
impaired.

Publicly 
available 
image 
datasets 
and Google 
images

RGB High-speed, 
high- 
accuracy fire 
detection in 
indoor scenes.

Real-time 
fire detection 
for indoor 
environments.

Note .  YOLOv5 = You Only Look Once version 5; GSConv = Ghost-shuffle convolution;  
VoV-GSCSP = One-shot aggregation network-based ghost shuffle cross stage partial; RGB = Red, green, and blue;  
YOLOv5n = You Only Look Once version 5 nano; QARepNeXt = Quantization-aware re-parameterized network 
with aggregated transformations; QAHARep-FPN = Quantization-aware hybrid attention re-parameterized 
feature pyramid network; Focal-SIoU = Focal scaled intersection over union loss function; FM-VOC Dataset 
18644 = Fire and smoke visual object classes dataset with 18,644 images; mAP50-95 = Mean average precision 
at IoU thresholds from 0.50 to 0.95; YOLOv5s = You Only Look Once version 5 small; mAP = Mean average 
precision; FPS = Frame per second; EfficientNetV2 = Efficient convolutional neural network version 2;  
SIoU = Scaled intersection over union; PASCAL VOC2007 = Pattern analysis, statistical modelling and 
computational learning – Visual object classes challenge 2007; MiDaS = Mixed depth and scale

In this study, three significant key contributions are presented:

1.	 A comparative analysis of RGB and HSV color spaces specifically for kitchen fire 
detection, an area that has received limited attention.

2.	 The use of YOLOv5m, a state-of-the-art object detection model, for this task, which 
offers a balance between speed and accuracy. 

3.	 An evaluation of the impact of background complexity on fire detection performance, 
providing insights into the robustness of the proposed approach in real-world scenarios. 

Although previous work has examined RGB images and various deep learning models 
for fire detection, little research has investigated discriminative analysis between the RGB 
and HSV color spaces within a YOLOv5 architecture. To the best of our knowledge, there 
is no systematic work evaluating RGB vs. HSV color spaces for fire detection in kitchens 
using YOLOv5m, particularly about background variation and clutter, a crucial issue in 
real-world kitchen environments.

This study addresses these limitations by evaluating and comparing the performance 
of RGB and HSV for the YOLOv5m object detection model in kitchen fire scenarios. With 
this motivation, the research is directed by the following questions:
RQ1: How does the HSV color  space perform with respect to detection (i.e., precision, 

recall, and mAP) in comparison with the RGB color space when YOLOv5m is used 
for kitchen fire detection?

Table 1 (continue)
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RQ2: What is the impact of including realistic kitchen background images in the training 
dataset on the detection performance and the number of false positives of a 
YOLOv5m-based kitchen fire detection system?

These questions were explored through a set of experiments on RGB and HSV datasets, 
with identical model settings for fair comparisons.

PROPOSED METHODS

Research Overview

The suggested method for creating an indoor kitchen fire detection model is shown 
in Figure 1. A thorough method for creating a fire detection model is described in the 
suggested flowchart. The process starts with image database acquisition, followed by data 
pre-processing, which involves several steps such as data cleaning, cropping, resizing, 
removing background, and annotation. To verify the model’s applicability, the pre-processed 
data is then split into three datasets, which are training, validation, and testing. Using the 
training and validation datasets, respectively, the model is trained and validated during the 
training phase. Next, the testing dataset is used to evaluate the refined fire detection model’s 
performance on an unknown dataset. The model’s recall rate, precision rate, mAP@0.5, 
and mAP@0.5-95 are all evaluated as part of the evaluation process. With the potential to 
significantly reduce environmental fires, this suggested methodology offers a methodical 
and efficient approach to building kitchen fire-detection models.

Figure 1. Flowchart of the proposed method
Note. YOLO5m = You Only Look Once version 5 medium
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Object Detection Model

One object detection algorithm technique that is popular for its reliability, simplicity, and 
accuracy (Johnston et al., 2022). It is called YOLOv5. The YOLOv5 (Jocher, n.d.b) was 
released by Ultralytics and consists of three main components: the backbone, neck, and 
head.

The backbone depends on the CSP-Darknet53 convolutional network and employs 
the cross-stage partial (CSP) strategy to expedite information flow while alleviating issues 
linked to redundant and vanishing gradients (S. Liu et al., 2022; Wu et al., 2023). A version 
of the spatial pyramid pooling (SPP) is incorporated into the neck of the YOLOv5 model, 
and the Bottle-NeckCSP is integrated into the Path Aggregation Network (PANet) (Jocher, 
n.d.a). A combination of these techniques enhances the receptive field, allowing the network 
to retain speed while separating important context features. The CSPNet strategy (Wu et al., 
2023) improved PANet in YOLOv4 as a feature pyramid network, providing better pixel-
level localization accuracy in YOLOv5. The neck of architecture is crucial for managing 
object scaling and enabling the model to perform remarkably well on unseen data.

The head of YOLOv5 consists of three convolutional layers, similar to its predecessors 
(Wu et al., 2023). These layers, which differ slightly from the preceding versions in the 
computation of target coordinates for bounding boxes, predict the coordinates of bounding 
boxes, score, and object classification (Kim et al., 2023; Wu et al., 2023).

According to Johnston et al. (2022), there are four different levels of neural network 
models in YOLOv5, from simplest to most complex including YOLOv5s, YOLOv5m, 
YOLOv5l, and YOLOv5x. With the help of an effective inference strategy and a lightweight 
network architecture, YOLOv5s is a single-stage detector that enables quick and precise 
object recognition (Vats & Anastasiu, 2023). Besides, YOLOv5l and YOLOv5x offer 
higher accuracy due to their deeper and wider architecture, but require significantly more 
computational resources, which can be a limitation for deployment on hardware with 
constrained processing power. YOLOv5m represents a balanced compromise between 
these extremes, offering improved detection precision over YOLOv5s while maintaining a 
reasonable inference speed and manageable resource consumption. Given the demand for 
quick, medium-level performance, and high precision without overwhelming computational 
cost, YOLOv5m is selected as the model for this paper. 

Performance Metrics

In this study, mAP, precision, recall, F1-score, and latency are selected as the primary 
evaluation metrics to assess the fire detection model’s performance. These metrics 
are widely used in object detection tasks because they capture both localization and 
classification performance. Precision indicates the proportion of correctly identified fire 
instances among all instances predicted as fire, while recall measures the model’s ability to 
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detect all actual fire instances. mAP, particularly at intersection over union (IoU) thresholds 
such as mAP@0.5 and mAP@0.5:0.95, provides a comprehensive summary by integrating 
precision and recall across multiple confidence levels and IoU thresholds. F1-score, the 
harmonic means of precision and recall, balances these two metrics, offering a single 
measure of a model’s overall detection performance.

Since this study is limited to fire as a class, the computed mAP approximates the 
average precision (AP) across all fires. To compute the AP, the IoU must be provided first. 
The overlap between the ground-truth and predicted bounding boxes is measured using a 
metric called IoU. It is computed as the ratio of the intersection area to the union area of the 
two bounding boxes. This metric is frequently used to evaluate object recognition models, 
as it assesses how well the model can locate and identify objects in an image. A threshold 
value is compared with the IoU value for the anticipated and ground-truth bounding boxes 
to determine whether a detection is correct or incorrect. This study selected a threshold 
value of 0.5, which is commonly used in evaluating object detection models.

The link between the IoU value and the threshold value must be considered to assess 
an object detection model’s performance properly. The terms listed below are introduced 
specifically to explain this relationship: For an IoU of 0.5 or greater, the results are 
considered true positives (TP); meanwhile, an IoU below 0.5 is classified as a false 
positive (FP), and a false negative (FN). TP denotes a ground truth bounding box that has 
been correctly detected, while FP denotes an item that has been incorrectly detected. FN 
denotes that the model cannot identify an object within the image. Since a true negative 
(TN) implies that there is no targeted object in the detected image, it was not considered 
while calculating performance (Padilla et al., 2020).

TNs are a crucial component of a model’s performance, but they are usually excluded 
from the mAP computation for object detection since mAP is intended to assess the 
model’s object recognition capabilities rather than its detection accuracy. Thus, TN is not 
relevant for this study, given that every fire image has previously been labelled during the 
pre-processing stage. Consequently, the evaluation performance will involve TP, FP, and 
FN to calculate the model’s accuracy and reliability using precision (P) and recall (R). P 
will calculate the proportion of correct predictions to the model’s accuracy in the detection 
process. The ratio of accurate positive forecasts to all ground facts is known as R. The P 
and R formulas, as indicated by Equations 1 and 2, respectively.

Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹
 	 [1]

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹
 	 [2]
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A precision-recall curve was used to identify the optimal threshold that maximizes both 
metrics. This curve is a valuable gadget for enhancing the performance of a detection model. 
The metric of AP in Equation 3 is a summary of the precision-recall curve to indicate the 
mean of all precisions. The weighted mean of precisions at each threshold, which represents 
the increase in recall in comparison to the previous threshold, is used to calculate the AP.

AP = � [𝑅𝑅 (k) − 𝑅𝑅 (k + 1) ] × 𝑃𝑃 (k)
𝑘𝑘=𝑖𝑖=1

 	 [3]

where i = number of thresholds, R = recall, k = index, and P = precision.

The mAP is formulated by averaging the AP across all classes, as shown in Equation 4.

𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑛𝑛
�𝐴𝐴𝐴𝐴𝐴𝐴
𝑘𝑘=𝑛𝑛

𝑘𝑘=1

 	 [4]

where n = number of classes, k = index, and APk = the Average Precision of class k.

For this study, the mAP formulation is based on a single class: kitchen fires. There are 
two variations of metrics obtained from the base formula of mAP, also known as mAP@50 
and mAP50-95.

However, these metrics also have limitations. Precision and recall do not account for 
the spatial accuracy of the bounding boxes, which can be critical in real-time fire detection 
scenarios. Additionally, mAP may not fully reflect the model’s performance in safety-critical 
situations, where false negatives (missed fires) carry more severe consequences than false 
positives. While F1-score provides a better balance between precision and recall, it does 
not address how well the bounding boxes align with the actual fire, which can be crucial 
for accurate fire detection. Latency, or the time taken for the model to process an image 
and make a prediction, is another important metric for real-time applications, ensuring 
that the model can provide timely alerts in dynamic environments like kitchens. Despite 
these limitations, these metrics remain the standard in object detection research, providing 
a meaningful basis for comparative evaluation with existing models.

Dataset Acquisition

The kitchen fire data employed in this study are the original ones developed by the authors. 
Real video clips of kitchen fire scenarios were filmed in controlled conditions. Next, 
OpenCV was used to split the videos into still image frames of size 1920×1080 pixels and 
to filter out poor-quality or simply blurred frames. The ultimate dataset is in two versions, 
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one in RGB and another in HSV. The HSV dataset was built by converting each RGB image 
to HSV using OpenCV’s cv2. cvtColor function. The dataset in this work contains images 
of visible kitchen fires, including flames on the stove and a pan under diverse lighting and 
background conditions. Thus, the focus of this work is on detecting flames during their 
visible state. Our experimental setup aims to study fire categorization in a kitchen setting, 
utilizing two different color spaces: RGB and HSV. A small, portable kitchen burner is 
used in the experiment as the primary source of fire, and data is collected from six different 
locations using two cameras: an iPhone X and a Samsung Galaxy Note 10 Lite. These 
smartphone models were deliberately chosen to reflect a realistic range of image capture 
devices available to everyday users. The iPhone X represents a high-end iOS device, 
while the Samsung Galaxy Note 10 Lite represents a mid-range Android device, allowing 
us to incorporate variations in hardware specifications, image processing algorithms, and 
camera sensors. This diversity helps enhance the generalizability and robustness of our 
vision-based fire detection model. These locations were carefully selected to ensure that 
our vision-based fire detection model would be robust, capturing thorough visual data 
from multiple perspectives.

The camera positioning is as follows: for the first round of recording, two cameras 
are placed at 45-degree angles relative to the stove’s front view. Next is the placement of 
those two cameras, with one positioned directly in front and the other from a side view. 
These positions enable the capture of variations in fire dynamics and behavior, such as 
flame spread and intensity, that may occur during cooking activities. Furthermore, after the 
recording ended in the second round, the cameras were mounted at a top-down perspective, 
positioned 75 cm above the kitchen stove. This overhead view offers a crucial insight into 
the vertical spread of flames, which is vital for detecting fire patterns and understanding 
smoke evolution. The distance of the front camera from the stove is set at 50 cm, providing 
a clear, focused view of the fire’s origin and progression.

The specific angles and camera arrangement for the experiment are shown in Figure 
2. These camera placements are carefully configured to capture various angles and ensure 
comprehensive data collection, thereby improving the accuracy of fire detection systems. 
Due to the positioning of each camera, the experiment can examine flame properties such 
as color intensity and saturation, which are crucial for differentiating between fire and 
non-fire situations in actual kitchen settings. The experiment can achieve this by utilizing 
both RGB and HSV color spaces in combination.

By combining various viewpoints and color space analysis, this experimental design 
aims to minimize false positives while enhancing early fire detection and classification 
models in the kitchen context.
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Figure 2. Camera positions in the experimental setup for fire detection

The images were taken from the six camera positions, as shown in Figures 3 and 4. In 
this experimental setup, the classification of two main types of fire: stove flame and pan 
fire. This classification is essential for differentiating between typical cooking flames, like 
those from a stove burner, and real fire incidents, like when a fire breaks out of a contained 
area and ignites objects like a pan. To improve the precision of fire detection in kitchen 
settings, the dataset produced by this experiment will concentrate on these two scenarios.

The term stove flame classification describes how a kitchen stove operates typically, 
with the flames contained within the burner and utilized for cooking. This class is crucial 
for determining safe cooking practices and lowering false alarms in fire detection systems. 
The fire-in-the-pan categorization, on the other hand, describes circumstances in which 
flames spread onto the pan, indicating a possible fire hazard. The identification of early 
fire occurrences that could result in uncontrolled kitchen fires depends heavily on this 
classification.

By capturing images from varying perspectives, from front, side, and top-down views, 
the dataset will provide comprehensive visual information for these two fire types. The 
combination of RGB and HSV color spaces will aid in identifying subtle differences in 
flame color, intensity, and spread between normal stove flames and hazardous pan fires.
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This differentiation between stove flame and pan fire will play a vital role in refining 
the fire detection model, ensuring the system can accurately detect true fire hazards while 
minimizing false positives in kitchen environments.

Each position of the camera recorded a 10-minute video. The Google Colab platform’s 
OpenCV package was then used to process these recordings. A total of 3,000 raw images 
were obtained by converting each video into a series of 500 images. Every image was 
thoroughly examined to guarantee the accuracy and caliber of the dataset. A final selection 
of 2,316 photos was made by eliminating blurry or poor-quality photos. 

To evaluate the impact of color space on fire detection performance, the dataset was 
split into two versions: one in the original RGB color space and the other in HSV. The RGB 
images were used as-is for training the first model. For the HSV dataset, each RGB image 
was converted to HSV using OpenCV’s cv2.cvtColor(image, cv2.COLOR_RGB2HSV) 
function in Python. The HSV-converted images were saved and labeled identically to the 
original RGB images to ensure consistency in the training process. Both the RGB and HSV 
image sets were then independently used to train the YOLOv5m model, using identical 
training parameters to facilitate a fair comparison. The YOLOv5 model was further tested on 
the selected dataset, with an emphasis on fire detection in both RGB and HSV color spaces.

 

(a) (b) 

(c) (d) 

(f) (e) 

Figure 3. A sample of six images represent six 
different positions of pan fire object from red, green, 
and blue (RGB) dataset: (a) 50 cm and 45° left, (b) 
50 cm and 45° right, (c) 50 cm and side right, (d) 50 
cm and center, (e) 75 cm and top left, and (f) 75 cm 
and top right, respectively

Figure 4. A sample of six images represent of six 
different positions of pan fire object from hue, 
saturation, and value (HSV) dataset: (a) 50 cm and 
45° left, (b)50 cm and 45° right, (c) 50 cm and side 
right, (d) 50 cm and center, (e) 75 cm and top left, 
and (f) 75 cm and top right, respectively
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Background Images

The background images with no fire indication from the stove and pan are shown in Figures 
5 and 6. It has been suggested that including the background images in training might reduce 
false positives (Zhao et al., 2023). The six precise locations were used to get background 
images from the previous section. 

Figure 5. A sample of six different background 
images from the red, green, and blue (RGB) dataset

Figure 6. A sample of six different background 
images from the hue, saturation, and value (HSV) 
dataset

Pre-Processing

The images were cropped to eliminate any unrelated backgrounds, specifically non-fire, 
as shown in Figure 7. The images were then resized after cropping to be compatible with 

Figure 7. The flow of pre-processing steps for the fire image
Note. RGB = Red, green, and blue; HSV = Hue, saturation, and value
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the YOLO model, which only accepts image sizes that are multiples of 32. The images 
were resized to a 416 × 416-pixel size.

In this study, no data augmentation techniques were applied during training. This 
decision was made to preserve the authenticity and raw visual characteristics of the kitchen 
fire scenarios as captured under real-world ambient lighting conditions. The aim was to 
evaluate the model’s performance on naturally occurring variations in fire appearance 
without introducing synthetic transformations that could potentially distort fire features 
or misrepresent actual conditions. Additionally, no further normalization or pixel-intensity 
normalization was provided beyond the automatic internal pre-processing applied by the 
YOLOv5 framework to the input.

Dataset Partition 

To ensure an exhaustive assessment of the model, the dataset was split into training, 
validation, and testing sets. The model was trained using the training set to identify the key 
features of the images. The validation set was used to monitor the model’s performance 
throughout training, providing insights to tune its settings and parameters for improved 
performance. The performance of the trained model was assessed using the testing set. 
As Table 2 illustrates, the training, validation, and testing ratios in this article were set 
at 70:15:15. The datasets were shuffled using the scikit-learn shuffle function, with the 
random state parameter set to 1, to ensure reproducibility of the results. This ensures that the 
data is consistently and randomly ordered. There was no stratification splitting. However, 
randomization ensured that the two classes were equally distributed across the training, 
validation, and testing sets in the experiment. To investigate the effect of background 
context on model performance and the reduction of false positives, background images 
were integrated in Experiments 2 and 3 with a 5:1 fire-to-background ratio. Specifically, 
244 background images were included in Experiment 2, and 486 background images were 
included in Experiment 3.

Table 2  
Distribution of kitchen stove fire image dataset 

Experiment Color 
space

Number of images Background 
images (5:1 ratio)Training Validation Testing

1: Pan fire (No background) RGB 200 43 43 0
HSV 200 43 43

2: Stove and pan fire with 
background

RGB 857 182 183 244
HSV 857 182 183 244

3: Fused RGB and HSV RGB and 
HSV

1,702 364 366 486

Note. RGB = Red, green, and blue; HSV = Hue, Hue, saturation, and value
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Experiments 

The experiments were conducted using a Lenovo ThinkStation P300 equipped with standard 
specifications, and all model training and testing were performed on Google Colab with 
Python 3.10.12 and PyTorch version 2.4.1+cu121. Training was conducted on an Nvidia 
(USA) Tesla T4 graphics processing unit (GPU) with 15 GB of video random access 
memory (VRAM). The central processing unit (CPU) and random-access memory (RAM) 
specifications were those provided by the Google Colab environment. The YOLOv5m 
model was selected for its balance between performance and computational efficiency. 
Required libraries included OpenCV, NumPy, PyTorch, and Matplotlib. 

For YOLOv5m, it was trained for 200 epochs, using a batch size of 29, with the input 
image resolution of 416 × 416 pixels, which is similar to typical YOLO training settings. 
All training used the custom data set, and image preprocessing included resizing and 
normalization necessary for use with the YOLOv5 framework.

The model was optimized with the SGD optimizer with an initial learning rate of 0.01 
and momentum of 0.937. An additional cosine learning rate schedule was applied, decaying 
the learning rate to 1% of its initial value at the end of training. Warmup was done with 
three epochs, initializing with a warmup momentum of 0.8 and a warmup bias learning 
rate of 0.1. These values correspond to the default YOLOv5 hyperparameters, which have 
been finely tuned for stable convergence.

The work from the first and second experiments is depicted in Figures 8 and 9. Figure 
10 displays the block diagram for the third experiment. Before the training, validation, 
and testing stages, pre-processing was applied to every stove fire and pan fire, including 
the background images. To start, every fire on the pan was individually cropped to remove 
any non-fire items. In terms of the background images, any fire objects that appeared in 
them were removed by cropping off the area of the image showing the pan and stove on 
fire, resulting in a clean background. The bounding box surrounding the targeted items was 
then provided as ground truth using LabelImg to annotate the fire images. The background 
images were not labelled and were simply added to the training dataset. 

In our approach, the original YOLOv5m model provided by Ultralytics was used 
without any architectural changes. The model was initialized with pre-trained common 
objects in context (COCO) weights to take advantage of transfer learning gains. The 
structure of the backbone, neck, and detection head was not modified based on the model. 
The standard version has been used with the intention that, in case of fire occurrence, it 
would be a fair comparison for the RGB and HSV scenarios.

The datasets were then divided into three sets of experiments:

1.	 In the first experiment, the study concentrated solely on pan fire images without any 
kitchen background. The purpose of this experiment was to determine whether color 
space (RGB vs. HSV) had an impact on fire detection accuracy. The RGB and HSV 
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datasets were trained separately on YOLOv5m, and the results were compared to 
determine the color space with superior performance in a controlled, background-free 
environment.

2.	 The second set of experiments consists of both stove fire and pan fire images. This 
experiment compares the performance of RGB and HSV on background images. The 
performance of the RGB and HSV datasets, which included photos of stoves and pan 
fires, was examined after each dataset was trained separately. 

3.	 The third experiment uses the fusion of both the RGB and HSV datasets to create more 
training sets. This experiment aims to investigate whether the model performs better at 
fire detection when it learns features from both RGB and HSV datasets simultaneously. 

Figure 8. Flowchart of the first experiment
Note. RGB = Red, green, and blue; HSV = Hue, saturation, and value; YOLOv5m = You Only Look Once 
version 5 medium
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Figure 9. Flowchart of the second experiment
Note. RGB = Red, green, and blue; HSV = Hue, saturation, and value; YOLOv5m = You Only Look Once 
version 5 medium

Figure 10. Flowchart of the third experiment
Note. RGB = Red, green, and blue; HSV = Hue, saturation, and value; YOLOv5m = You Only Look Once 
version 5 medium
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RESULTS AND DISCUSSION

Results Overview

The performance of the RGB, HSV, and fused RGB-HSV datasets is compared across 
important assessment measures, including recall, precision, F1-score, mAP@50, and 
mAP@50-95, in the Table 3, which summarizes the experiment results. These metrics 
provide information about how well the model detects different scenarios and an overall 
sense of how effectively each model can detect fire and stove-related events across 
different kitchen settings. The calculations of the metrics were based on the validation 
functions provided in the YOLOv5 platform. A prediction was a true positive if the IoU 
of the predicted and ground truth bounding box was 0.5 or larger. mAP@50, which is 
the  average precision at an IoU threshold of 0.5, and mAP@50–95 reflects the robustness 
of the model by averaging the performance over  the IoU ranging from 0.5 to 0.95 with 
an increment of 0.05.

Table 3 
Overall result of performance metrics for three experiments

Experiment Color 
space

Recall Precision F1-score mAP@50 mAP@50-
95

Experiment 1 (Pan fire) RGB 0.843 0.886 0.863 0.873 0.651
HSV 0.882 0.931 0.905 0.938 0.632

Experiment 2 (Stove and 
pan fires)

RGB 0.933 0.941 0.937 0.950 0.632
HSV 0.921 0.966 0.943 0.953 0.624

Experiment 3 (Fusion 
RGB-HSV)

Fused RGB 
and HSV

0.918 0.953 0.935 0.949 0.622

Note. mAP = Mean average precision; RGB = Red, green, and blue; HSV = Hue, saturation, and value

Experiment 1: Training Dataset without Background Images

An extensive analysis of our suggested model’s performance on datasets that only contain 
specific fires on pan images in Table 4 . Various performance metrics were used to analyze 
the capabilities of the model and provide an extensive discussion of the results.

Table 4 
Performance metrics for Experiment 1

Training dataset Recall Precision F1-score mAP@50 mAP@50-95
RGB without background images 0.843 0.886 0.863 0.873 0.651
HSV without background images 0.882 0.931 0.905 0.938 0.632

Note. mAP = Mean average precision; RGB = Red, green, and blue; HSV = Hue, saturation, and value
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In the first experiment, fire detection accuracy was tested in a controlled background-
free environment by comparing RGB and HSV color spaces. The analysis was conducted 
based on the performance of YOLOv5m, which was trained separately on RGB and HSV 
datasets of pan fire images. The findings provide insight into how the two-color spaces 
differ in terms of processing and performance when it comes to detecting kitchen fires.

Processing Time and Epochs
For 200 epochs, or an equal number of iterations over the datasets, the RGB and HSV 
models were trained. Both color spaces required equal computational resources for training, 
as indicated by the consistency of processing times, which were approximately 15 minutes 
(0.249 hours for RGB and 0.248 hours for HSV). This equivalency shows that the amount 
of time needed to train the YOLOv5m model in this controlled setting was not significantly 
affected by the color space selection.

Inference Speed
Between the two models, there was a small difference in the inference speed during 
validation. While the HSV dataset processed photos at 2.32 iterations per second (it/s), 
the RGB dataset processed images at 2.41 it/s. Despite being negligible, this difference 
implies that the HSV photos were validated a little bit faster. This might be explained by 
the way the YOLOv5m model handles the color channels of RGB and HSV differently, 
albeit the differences are not great enough to imply that one has a computational advantage 
over the other.

Performance Metrics
The main objective of this experiment was to evaluate the accuracy of fire detection 
between the RGB and HSV color spaces. The performance metrics in Table 4 shows a 
considerable difference between the HSV and RGB models. In almost every metric used 
in this experiment, the HSV color space outperformed RGB. Compared to RGB, which 
obtained a recall of 0.843, a precision of 0.886, an F1-score of 0.863, and an mAP@50 of 
0.873, HSV obtained a higher recall of 0.882, a precision of 0.931, an F1-score of 0.905, 
and an mAP@50 of 0.938. This shows that removing the background improves HSV’s 
ability to identify fire from non-fire elements. This might be because the nature of the HSV 
color space allows less interference in color feature separation, such as the hue of fire in 
the presence of minimal distractions in the background. Nonetheless, it is intriguing to 
observe that, although the mAP@50-95 (which is a more rigorous measure and assessed 
over a range of IoUs) is a little lower for HSV (0.632) than RGB (0.651), the precision and 
recall metrics still favor HSV. This suggests that even though RGB may be constructed 
with greater leeway to varying levels of IoU, its effectiveness is inferior when it comes 
to detecting fire, in which case it is restricted to a narrow range of thresholds, whereby it 
facilitates detection more accurately than the RGB model.
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Nonetheless, although the mAP@50-95, which is a more rigorous measure that assesses 
over a range of IoUs, is slightly lower for HSV (0.632) than for RGB (0.651), the precision, 
recall, and F1-score metrics still favor HSV. That means that HSV is more accurate in 
identifying fire when restricted to certain thresholds, even though RGB might have a wider 
tolerance at different IoU values. As demonstrated in Figures 11 and 12, the YOLO5m is 
utilized to detect the validation and testing image samples, respectively. 

Figure 11. The YOLOv5m model was used to detect validation samples of (a) RGB and (b) HSV images, 
respectively
Note. YOLOv5m = You Only Look Once version 5 medium; RGB = Red, green, and blue; HSV = Hue, 
saturation, and value

Figure 12. The YOLOv5m model was used to detect testing samples of (a) RGB and (b) HSV images, 
respectively
Note. YOLOv5m = You Only Look Once version 5 medium; RGB = Red, green, and blue; HSV = Hue, 
saturation, and value
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Experiment 2: Training Dataset with Background Images

The second experiment was conducted with an expanded scope of the dataset by 
incorporating both stove flame and pan fire images, including the background surrounding, 
which increased the task complexity. The objective was to determine the performance 
matrix differences between RGB and HSV in the first experiment with more complex, real-
world scenarios involving kitchen backgrounds. Both RGB and HSV color spaces were 
evaluated using the YOLOv5m model based on the detection of fire and stove elements, 
as shown in Table 5.

Table 5  
Performance metrics for Experiment 2

Training dataset Recall Precision F1-score mAP@50 mAP@50-95
RGB with background images 0.933 0.941 0.937 0.950 0.632
HSV with background images 0.921 0.966 0.943 0.953 0.624

Note. mAP = Mean average precision; RGB = Red, green, and blue; HSV = Hue, saturation, and value

Processing Time and Epochs

Both the RGB and HSV datasets required more time to train than in the first experiment, 
with RGB taking about 46 minutes (0.771 hours) and HSV taking a longer duration at 49 
minutes (0.808 hours). Training was done for both datasets over 200 epochs. Given the 
complexity of the dataset and the inclusion of background features, the longer training time 
was anticipated. Given that the same number of epochs was used to train both models, the 
significantly longer processing time for HSV implies that the background complexity may 
have contributed to a slightly slower training process for this color space.

Inference Speed

Comparing RGB (1.28 it/s) to the first experiment, the inference speed during validation 
was noticeably slower. This is probably because there were more different kinds of 
images, including backgrounds, stove, and pan fire, which raised the computational 
processing demand. HSV model performance, on the other hand, was consistent with the 
first experiment, demonstrating an inference speed of 2.38 it/s, nearly twice as fast as the 
RGB model. This suggests that the HSV color space can handle backdrop clutter with 
lower processing time.

Performance Metrics

Both RGB and HSV color spaces performed well overall in terms of fire detection 
abilities. Nevertheless, a review of the performance measures revealed some significant 
variations. The HSV model outperformed RGB with a precision of 0.966 as opposed to 
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0.941. This indicates that the HSV model is more accurate in differentiating between fire 
and stove elements from the background, as it generates fewer false positives. For real-
world applications, where lowering false positives is essential, this increased precision 
is noteworthy. With a recall score of 0.933 against HSV 0.921, the RGB model scored 
somewhat better than HSV. This indicates that, when compared to HSV, the RGB model 
was more accurate in recognizing true positives, catching a higher proportion of real fire 
and stove occurrences, but at the cost of more false positives. In terms of mAP@50, RGB 
scored 0.950 and HSV achieved 0.953, indicating equivalent performance for both models. 
According to this metric, the two-color spaces identify fire occurrences at the 50% IoU 
threshold nearly equally well. Nonetheless, the slightly elevated score of the HSV model 
bolsters its advantage in precision. In the mAP@50-95 metric, the RGB achieved a higher 
score of 0.632 than the HSV model with 0.624. This finding suggests that RGB may perform 
better across a range of IoU thresholds, potentially enhancing its robustness in identifying 
fires in congested environments with diverse background objects and surroundings. 

Class-Wise Breakdown

More information about how each color space handles pan fire, and stove images can be 
found in the performance metrics broken down by class, shown in Table 6.

Table 6  
Performance metrics for Experiment 2 by class

Model Training class Recall Precision F1-score mAP@50 mAP@50-95
RGB Pan fire 0.887 0.876 0.881 0.909 0.567

Stove flame 0.994 0.989 0.992 0.991 0.697
HSV Pan fire 0.939 0.852 0.893 0.919 0.558

Stove flame 0.993 0.989 0.991 0.988 0.691

Note. mAP = Mean average precision; RGB = Red, green, and blue; HSV = Hue, saturation, and value

For pan fire images: The HSV model performed better than the RGB model (0.887) 
in terms of recall (0.939), indicating that it could identify more actual fires. HSV achieved 
mAP@50-95 (0.558) and precision (0.852), which were, however, lower than those of RGB 
(0.876, 0.567 for mAP@50-95). As a result, HSV provided a greater range of detection 
performance, even though it was more consistent in spotting fire. It also created more 
false positives. On the other hand, the RGB model was able to achieve a better balance 
between precision and recall metrics, because it was more adept at differentiating colors 
over complex backgrounds.  

Stove flame images: Both color spaces performed well. While the HSV model produced 
similarly good metrics (recall = 0.993, precision = 0.989), the RGB model obtained a recall 
of 0.994 and a precision of 0.989. The nearly flawless detection of stoves in all models 
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suggests that significant visual cues, including the stove’s unique shape and structure, were 
crucial in achieving high detection accuracy across all color spaces.

Both classification detection utilizing YOLOv5m for both color spaces are shown in 
Figures 13 and 14.  

 

  

(a) (b) 

Figure 13. The YOLOv5m model was used to detect validation samples of (a) RGB and (b) HSV images, 
respectively
Note. YOLOv5m = You Only Look Once version 5 medium; RGB = Red, green, and blue; HSV = Hue, 
saturation, and value

Figure 14. The YOLOv5m model was used to detect testing samples of (a) RGB and (b) HSV images, 
respectively
Note. YOLOv5m = You Only Look Once version 5 medium; RGB = Red, green, and blue; HSV = Hue, 
saturation, and value
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Experiment 3: Training Dataset Fused RGB-HSV with Background Images

The third experiment was done to evaluate the performance of a fusion of two different 
color spaces in one dataset. Through the combination of both RGB and HSV datasets, 
the experiment aimed to take advantage of RGB and HSV complementing capabilities, 
particularly in handling background clutter and color differentiation. 

Training Process and Epochs

In contrast to the 200 epochs used in earlier experiments, the model was trained for only 
153 epochs. The training period was completed in about 69 minutes, or 1.15 hours, with 
an early halt happening when no improvement was seen for the final 10 epochs. This early 
stopping mechanism indicates that the model reached its optimal solution more quickly. 
However, it also suggests that longer training times were not necessary to achieve peak 
performance, due to the added complexity introduced by combining the RGB and HSV 
datasets.

Inference Speed

During validation, the inference speed was 1.19 iterations per second (it/s), which was 
slower than in Experiment 2 (2.38 it/s) for HSV. The larger and more complex dataset 
produced by combining two color spaces is likely the cause of this speed reduction. More 
computational overheads may have been incurred by the model’s need to process a more 
varied set of features.

Performance Metrics

The fusion model did not significantly exceed the RGB or HSV models individually, but 
it did maintain good performance, especially in precision. The following is a summary of 
key performance metrics as shown in Table 7.

Table 7  
Performance metrics for Experiment 3

Training dataset Recall Precision F1-score mAP@50 mAP@50-95
Fusion of RGB and HSV datasets 0.918 0.953 0.935 0.949 0.622

Note. mAP = Mean average precision; RGB = Red, green, and blue; HSV = Hue, saturation, and value

As in the earlier experiments, a precision of 0.953 shows that the fusion model 
maintained its high level of accuracy in lowering false positives. This great precision 
indicates that the fusion did not negatively impact the model’s capacity to accurately identify 
stove or real fire incidents, as it is consistent with the individual RGB and HSV models.
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The recall value of 0.918 shown in this experiment is marginally less than in Experiment 
2 (HSV = 0.921, RGB = 0.933). This implies that while the fusion model performed well, 
it was not as successful as the individual RGB and HSV models in detecting every fire 
occurrence. The enhanced complexity of the fused dataset may have added more variability 
and confusion in identifying specific fire patterns, which could account for the slightly 
lower recall.

The mAP@50 result with 0.949 shows a good overall detection capacity, nearly 
matching the results from the individual RGB (0.950) and HSV (0.953) models. This 
consistency indicates that, at the 50% IoU threshold, combining RGB and HSV does not 
impair the model’s performance, suggesting that it remains capable of detecting fire and 
stove elements.

The mAP@50-95 value of 0.622 is marginally less than the mAP@50-95 values 
obtained from the separate RGB (0.632) and HSV (0.624) experiments. This indicates that 
the fusion model struggled at higher IoU thresholds, where bounding box predictions require 
greater accuracy. This could imply that some inconsistencies or overlapping features were 
introduced when merging features from the two-color spaces, which would have resulted 
in less accurate predictions in difficult circumstances.

Class-Wise Breakdown

Important details on how the fusion model processed fire and stove images may be found 
in the class-by-class breakdown shown in Table 8.

Table 8  
Performance metrics for Experiment 3 by class

Model Training class Recall Precision F1-score mAP@50 mAP@50-95
Fusion of RGB and 
HSV datasets

Pan fire 0.913 0.847 0.879 0.906 0.561
Stove flame 0.993 0.989 0.991 0.991 0.684

Note. mAP = Mean average precision; RGB = Red, green, and blue; HSV = Hue, saturation, and value

Pan fire images: In contrast to the RGB (0.887) and HSV (0.939) models from the 
second experiment, the recall for pan fire images was, on average, 0.913. This implies that 
the fusion model’s ability to identify actual fire incidents was effective. The fusion model, 
however, generated more false positives, as evidenced by the decreased precision for fire 
images (0.847) compared to the RGB model (0.876). Furthermore, the mAP@50-95 for fire 
images (0.561) was on average of RGB (0.567) and HSV (0.558), suggesting a deterioration 
in the model’s capacity to locate fire incidents at various IoU thresholds reliably.

Stove flame images: The recall and precision remained extremely high (recall = 0.993, 
precision = 0.989), in line with other trials. The fusion of RGB and HSV did not adversely 
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affect the accuracy of stove detection, as evidenced by the mAP@50-95 for stove images 
of 0.684, which was slightly lower than the prior results in Experiment 2. This implies 
that the complexity added by the fused dataset had a lesser impact on stove flame photos, 
which are easier to distinguish and identify visually.

Both classification detection utilizing YOLOv5m for experiment 3 is shown in Figures 
15 and 16 during the validation and testing process. 

Figure 15. The YOLOv5m model was used to detect 
validation samples of fused RGB and HSV images, 
respectively
Note. YOLOv5m = You Only Look Once version 5 
medium; RGB = Red, green, and blue; HSV = Hue, 
saturation, and value

Figure 16. The YOLOv5m model was used to detect 
testing samples of fused RGB and HSV images
Note. YOLOv5m = You Only Look Once version 5 
medium; RGB = Red, green, and blue; HSV = Hue, 
saturation, and value

Analysis of Confusion Matrices for Each Experiment

Confusion matrices are used to further evaluate model performance and understand 
the nature of classification errors in these experiments. These matrices demonstrate 
the model’s ability to distinguish between ‘fire’, ‘stove fire’, and ‘background’ classes. 
A higher incidence of false positives, specifically, misclassifications of background as 
fire, is shown in Experiment 1 (false positive rate: 22% for HSV, 23% for RGB), where 
background images were excluded. In contrast, Experiments 2 and 3, which incorporated 
varied background contexts, show a marked reduction in false positives, underscoring 
the critical role of background information in improving model robustness and reducing 
misclassification rates.

In the first experiment, which involved no background, models were trained on images 
depicting pan fire, allowing isolated evaluation of the impact of color space on fire detection. 
The confusion matrices for RGB and HSV in Figure 17 show strong diagonal dominance, 
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indicating that the models were highly accurate in classifying fire versus background. The 
HSV database model yielded fewer false negatives than the RGB model. This suggests that 
HSV color space provides superior color segmentation properties during the detection of 
fire pixels when minimal noise is involved. 

Figure 17.  Confusion matrices for the first experiment using (a) RGB and (b) HSV images, respectively
Note. RGB = Red, green, and blue; HSV = Hue, saturation, and value

In the second experiment, the dataset included a mix of stove fires and pan fires, as well 
as actual kitchen environments. This is the challenging part of the model as it involves a 
complex background. As shown in Figure 18, both HSV and RGB models show increased 
misclassification rates. The increment of misclassified stove fire images as background 
in the RGB model suggests that its features were more susceptible to distraction from 
surrounding kitchen elements. However, the HSV model depicted improvement in these 
scenarios, maintaining clearer separation between fire-related classes and the background. 
The HSV color space shows better color contrast and stability under varying lighting 
conditions, which is normal in a real kitchen environment. 

The third experiment was executed to assess the fused RGB and HSV dataset 
performance, which consisted of training samples drawn from both RGB and HSV formats. 
The result from the confusion matrix in Figure 19 demonstrates that the model trained 
outperformed individual color space models. A few pan fire and stove fire images were 
misclassified together with background images. This finding confirms that feature diversity 
obtained through fusion allows the model to learn a more comprehensive representation 
of fire characteristics accurately.
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Figure 18. Confusion matrices for the second experiment using (a) RGB and (b) HSV images, respectively
Note. RGB = Red, green, and blue; HSV = Hue, saturation, and value

Figure 19. Confusion matrix for the third experiment using fused RGB and HSV images
Note. RGB = Red, green, and blue; HSV = Hue, saturation, and value

The results revealed that HSV was slightly better than RGB in some cases. This effect 
might also be related to the fact that HSV allows the direct separation of chromatic (hue 
and saturation) and intensity (value) information and is thus more resilient to lighting 
variations. This property likely helps HSV better localize fire features in kitchen scenes, 
where illumination changes are common due to flames, reflections, or shadows.
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Thus, the  preference for HSV over RGB found in Experiments 1 and 2 might be 
because it separates chromatic content (hue) from illuminant (value). Fire is usually very 
red,  orange, and yellow, which is consistent in all lighting. Unlike RGB, where color 
and brightness are intertwined, HSV helps the fire model to concentrate more on the hue 
feature of the fire in distinguishing  flames from typical kitchen backgrounds, such as metal 
surfaces, tiles, and utensils.

Furthermore, with background images in Experiment 2, the task became more complex, 
possibly including  items such as stove knobs, cooking utensils, or reflections of lighting. 
The latter might introduce ambiguities to the model in RGB space, as similar colors can 
also exist in non-fire areas. Unlike HSV, the color information separation on the chromatic 
side of the HSV model that was applied in the framework subsequently suppressed 
the  background clutter and made detection more robust.

The false positive rate, which is defined as the proportion of  images without fire that 
were misclassified as containing fire, was significantly higher in Experiment 1 (0.22 for 
HSV, 0.23 for RGB), with reduced background variability. However, the false positive rate 
dropped dramatically in Experiments 2 and 3, using a variety of background images (0.13 
for HSV, 0.08 for RGB, and 0.08 for fused RGB + HSV). These results validate that the 
use of background images enhances the model’s ability to discriminate between fire and 
non-fire scenes, resulting in a decrease in the number of false alarms.

Comparison Between the Proposed Model and Other Approaches 

A comparison between the proposed YOLOv5m model and other cutting-edge YOLOv5 
techniques used in current fire detection studies is shown in Table 9. All the studies that were 
utilized for comparison involved RGB datasets, while one study used HSV and luminance, 
chrominance-blue, and chrominance-red (YCbCr) datasets as part of their training images. 
In general, the comparison illustrates the potential advantages of utilizing both RGB and 
HSV data for object detection tasks, particularly for fire detection. The results shown in 
Table 9, the greatest mAP@0.5 values, 0.950 and 0.953, respectively, are obtained by 
the proposed model YOLOv5m with background images (HSV and RGB), suggesting 
good precision for detecting fire events with background context. The performance of 
the proposed models demonstrates a trade-off between the use of background and non-
background images. It is interesting to note that RGB and HSV with background images 
maintain greater mAP@0.5 but have difficulty with mAP@0.5:0.95, suggesting a tendency 
to over-rely on background information or difficulties generalizing across different IoUs. 
HSV-based models typically outperform RGB-based models or perform about the same. 
For instance, compared to the RGB equivalent (0.873 mAP@50), the suggested model with 
HSV, excluding the background (0.938 mAP@50), performs better. This implies that HSV, 
perhaps because of its more intuitive representation of color fluctuations in fire, might be 
more suitable for fire detection.
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Table 9  
Comparison between the proposed model and other approaches

Method Color space mAP@050 mAP@50-95 Type of fire 
detection

YOLOv5 and flame threshold 
segmentation  
(Zhao et al., 2022)

RGB 0.863 0.576 Fire, smoke, 
lamp, 
reflections, 
sunshine

YOLOv5s-CA
(W. Liu et al., 2022)

RGB 0.946 - Smoke and fire

YOLOv5 with SE attention 
mechanism (Fan & Zhan, 2023)

RGB 0.941 0.799 Flame

YOLOv5 and YOLOv8  
(Mahmoud et al., 2024)

HSV and YCbCr 0.895 0.954 Fire and smoke

YOLOv5m 
(Proposed model)

RGB without 
background images

0.873 0.651 Fire

YOLOv5m 
(Proposed model)

HSV without 
background

0.938 0.632 Fire

YOLOv5m 
(Proposed model)

RGB with 
background images

0.950 0.632 Fire

YOLOv5m 
(Proposed model)

HSV with 
background images

0.953 0.624 Fire

YOLOv5m 
(Proposed model)

Fusion of RGB and 
HSV datasets

0.949 0.622 Fire

Note. mAP = Mean average precision; YOLOv5 = You Look Only Once version 5 ; RGB = Red, green, and blue; 
YOLOv5s-CA = You Look Only Once version 5 small with coordinate attention; SE = Squeeze-and-excitation; 
YOLOv8 = You Look Only Once version 8; YCbCr = Luminance, chrominance-blue, and chrominance-red; 
YOLOv5m = You Look Only Once version 5 medium; HSV = Hue, saturation, and value

Most models, including the proposed one, exhibit a rapid decline in mAP@0.5 to 
mAP@0.5:0.95, highlighting areas that require improvement for handling diverse object 
scales and ensuring reliable detection accuracy. This disparity implies that although the 
models are capable of simple fire detection, they are not as good at more complex detections 
across a range of IoU thresholds. The small benefits of combining RGB and HSV color 
spaces imply that the complementary qualities of these color spaces are not being fully 
utilized. Subsequent research could examine sophisticated fusion methodologies or examine 
the reasons behind the fusion’s inability to produce appreciably superior outcomes.

Implications and Ethical Considerations

This work demonstrates that using the color space method along with YOLOv5 will lead 
to improved kitchen fire detection, thus promoting household safety by providing timely 
responses in fire emergencies. The  method is applicable for low-cost, real-time use in 
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the home, where conventional systems fail. Legally, the issue of privacy is paramount, 
especially when it comes to using cameras in private locations. Local data analysis and user 
consent are critical for protecting personal privacy and complying with data protection laws.

CONCLUSION

The performance of object detection models can be greatly influenced by the selection 
of the training dataset. In particular, the top-performing dataset changes based on the 
metric of interest. Combining datasets can improve overall performance, demonstrating 
the advantages of using diverse training data sources in object detection applications. 
To determine the best training datasets and methods for object detection models, these 
results highlight the significance of carrying out experiments and evaluations. However, 
in this study, the proposed model resulted in the best overall mean performance in the first 
experiment, RGB, without background images, generating the highest mAP@0.5:0.95 score 
of 0.651. Interestingly, the overall performance in terms of precision and recall still favors 
HSV, even while the mAP50-95 is lower when compared to RGB. This suggests that HSV 
is more accurate in detecting fire when restricted to thresholds, whereas RGB may have a 
wider tolerance at different IoU values. Nevertheless, the fused model demonstrated high 
performance in identifying stove images (recall = 0.993, precision = 0.989), suggesting 
that stove identification is less susceptible to changes in color space and can be consistently 
achieved using RGB, HSV, or both. The detection scenario determines which RGB and HSV 
to use. HSV gives better precision for more straightforward, controlled conditions, which is 
essential for reducing false positives. However, RGB can more clearly distinguish fire from 
surrounding objects in real-world kitchen settings with more complicated backgrounds, 
and it might offer more dependable detection in certain situations. To analyze the benefits 
of combining a color space, we adopted an early fusion strategy. More specifically, each 
image was transformed from RGB to HSV, and both (RGB and HSV) were stacked along 
the channel dimension to form a single multichannel input. The YOLOv5 model was then 
trained using this aggregated input. The aim was to get the best attributes of each color 
spectrum to describe fire objects. However, the results show that this embedding was not 
beneficial, possibly because the input is more complex.

The proposed datasets were assessed using the specific YOLOv5m architecture 
model. In addition to evaluating the dataset using other state-of-the-art models, apart from 
YOLOv5, future research should involve increasing the quantity and variety of images and 
testing the model’s robustness under various settings to further improve its performance. 
Future research could further examine the robustness of the proposed model at various 
distances from the camera to distinguish between fire and other reddish objects. This study 
was limited to a single run of each experiment due to time and computational constraints. 
As a result, statistical measures such as mean, standard deviation, and significance testing 
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between the RGB and HSV results were not performed. Future work will involve repeated 
experiments to facilitate more robust statistical analysis. Another limitation is that the study 
focused on controlled kitchen environments. Further research is needed to evaluate the 
performance of the proposed approach in more complex and cluttered real-world kitchens. 
The dataset used in this study, while carefully curated, may not fully represent the wide 
variety of fire scenarios that can occur in kitchens. Future work should explore the use of 
larger and more diverse datasets. 

The research also suggested employing more advanced GPU specifications to reduce 
training times and investigating how various image resolutions impact the model’s 
performance. To further improve object detection model performance, additional feature 
engineering can be investigated, in line with the indicated future work. Another suggestion 
is to investigate performance in real-world kitchens, exploring the use of temporal 
information, evaluating computational efficiency on embedded devices, and addressing 
the limitations of the current dataset. By offering more details about an object’s form and 
texture, these characteristics can raise the precision of object detection algorithms. To 
further confirm the durability of HSV in practical applications, additional research may 
examine how these results apply to more complex scenarios with background noise.
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